So I know how to find particular solutions for many systems of ODE, but I cannot solve a particular type using the method of undetermined coefficients because I do not know what ansatz to use.
Basically, in examples like the ones below:
$$\frac{d\vec{x}}{dt}=\left( {\begin{array}{cc} 4 & -2 \\ 8 & -4 \\ \end{array} } \right)\vec{x}+\left( {\begin{array}{cc} 1 \\ 0 \\ \end{array} } \right)t^{-3}+\left( {\begin{array}{cc} 0 \\ -1 \\ \end{array} } \right)t^{-2},\;\;\; t>0$$
the particular solution is $\vec{y}_p(t)=-\frac{1}{2}\left( {\begin{array}{cc} 1 \\ 0 \\ \end{array} } \right) t^{-2}+\left( {\begin{array}{cc} 2 \\ 5 \\ \end{array} } \right)t^{-1}-2\left( {\begin{array}{cc} 1 \\ 2 \\ \end{array} } \right)\ln(t)-2\left( {\begin{array}{cc} 1 \\ 2 \\ \end{array} } \right)$, but I do not know where $\ln(t)$ comes from. How do I find the ansatz to find the particular solution when negative powers are being used?
Thanks a lot!