In the MSE-question in a comment to an naswer Michael Hardy brought up the following well known limit- expression for the Euler-gamma $$ \lim_{n \to \infty} \left(\sum_{k=1}^n \frac 1k\right) - \left(\int_{t=1}^n \frac 1t dt\right) = \gamma \tag 1$$
I've tried some variations, and heuristically I found for small integer $m \gt 1$ $$ \lim_{n \to \infty} (\sum_{k=1}^n \frac 1{k^m}) - (\int_{t=1}^n \frac 1{t^m} dt) = \zeta(m) - \frac 1{m-1} \tag 2$$
With more generalization to real $m$ it seems by Pari/GP that eq (1) can be seen as a limit for $m \to 1$ and the Euler-$\gamma$ can be seen as the result for the Stieltjes-power-series representation for $\zeta(1+x)$ whith the $\frac 1{1-(1+x)}$-term removed and then evaluated at $x=0$
Q1: Is there any intuitive explanation for this (or, for instance, a graphical demonstration)?
Another generalization gave heuristically also more funny hypotheses:
$$ \tag 3$$
$$ \small \begin{eqnarray}
\lim_{n \to \infty} (\sum_{k=2}^n \frac 1{k(k-1)}) &-& (\int_{t=2}^n \frac 1{t(t-1)} dt) &=& \frac 1{1!} \cdot(\frac 11 - 1\cdot \log(2)) \\
\lim_{n \to \infty} (\sum_{k=3}^n \frac 1{k(k-1)(k-2)}) &-& (\int_{t=3}^n \frac 1{t(t-1)(t-2)} dt) &=& \frac 1{2!} \cdot(\frac 12 - 2\cdot \log(2) + 1\cdot \log(3) ) \\
\lim_{n \to \infty} (\sum_{k=4}^n \frac 1{k...(k-3)}) &-& (\int_{t=4}^n \frac 1{t...(t-3)} dt) &=& \frac 1{3!} \cdot(\frac 13 - 3\cdot \log(2) + 3\cdot \log(3)- 1\cdot \log(4) ) \\
\end{eqnarray} $$
where the coefficients in the rhs are the binomial-coefficients and I think the scheme is obvious enough for continuation ad libitum.
Again it might be possible to express this with more limits: we could possibly write, for instance the rhs in the third row as
$$ \lim_{h\to 0} \frac 1{3!} \cdot(- \small \binom{3}{-1+h} \cdot \log(0+h) +1 \cdot \log(1) - 3\cdot \log(2) + 3\cdot \log(3)- 1\cdot \log(4) ) \tag 4$$
Q2: Is that (3) true and how to prove (if is it not too complicated...)? And is (4) somehow meaningful?