A similar technique to what has already been presented uses basic complex variables.
Suppose we seek to evaluate
$$\sum_{q=0}^{n-j}
{q+M-1\choose M-1} {n-M-q\choose n-j-q}$$
where $M\le j.$
Start from
$${n-M-q\choose n-j-q}
= \frac{1}{2\pi i}
\int_{|z|=\epsilon} \frac{1}{z^{n-j-q+1}} (1+z)^{n-M-q} \; dz.$$
This yields the following integral for the sum
$$\frac{1}{2\pi i}
\int_{|z|=\epsilon}
\sum_{q=0}^{n-j} {q+M-1\choose M-1}
\frac{1}{z^{n-j-q+1}} (1+z)^{n-M-q} \; dz
\\ = \frac{1}{2\pi i}
\int_{|z|=\epsilon} \frac{(1+z)^{n-M}}{z^{n-j+1}}
\sum_{q=0}^{n-j} {q+M-1\choose M-1}
\frac{z^q}{(1+z)^q} \; dz.$$
Now when $q> n-j$ we have $n-j-q+1 < 1$ so the pole at zero of the
defining integral disappears. There may or may not be a pole at minus
one but it is not inside the contour. This means we can extend the
summation to infinity, getting
$$\frac{1}{2\pi i}
\int_{|z|=\epsilon} \frac{(1+z)^{n-M}}{z^{n-j+1}}
\sum_{q=0}^\infty {q+M-1\choose M-1}
\frac{z^q}{(1+z)^q} \; dz
\\ = \frac{1}{2\pi i}
\int_{|z|=\epsilon} \frac{(1+z)^{n-M}}{z^{n-j+1}}
\frac{1}{(1-z/(1+z))^M} \;dz
\\ = \frac{1}{2\pi i}
\int_{|z|=\epsilon} \frac{(1+z)^n}{z^{n-j+1}}
\frac{1}{(1+z-z)^M} \;dz
\\ = \frac{1}{2\pi i}
\int_{|z|=\epsilon} \frac{(1+z)^n}{z^{n-j+1}} \; dz.$$
This integral can be evaluated by inspection and we get
$$[z^{n-j}] (1+z)^n = {n\choose n-j} = {n\choose j},$$
which proves the claim.
A trace as to when this method appeared on MSE and by whom starts at this
MSE link.