0

How to prove that $\tan1^{°}+\tan7^{°}+\dots+\tan175^{°}=-30\sqrt3$?

I noticed that $1^{°},7^{°},\dots,175^{°}$ form an arithmetic.

piteer
  • 6,310
  • Can you post the third term in the sequence? Do you have it with you? – MonK Aug 07 '14 at 09:33
  • Nevermind, got it. Assuming the angles are in an AP. – MonK Aug 07 '14 at 09:38
  • @piteer, Set $\theta=1^\circ,n=30$ to find the sum to be $$-30\cot\left(30\cdot90^\circ+30\cdot1^\circ\right)$$

    Now, $$\cot\left(30\cdot90^\circ+30\cdot1^\circ\right)=\cot\left(15\cdot180^\circ+30^\circ\right)=\cot30^\circ$$

    – lab bhattacharjee Aug 07 '14 at 16:20
  • @piteer, The previous comment actually missed the link : http://math.stackexchange.com/questions/346368/sum-of-tangent-functions-where-arguments-are-in-specific-arithmetic-series – lab bhattacharjee Aug 08 '14 at 15:54

0 Answers0