for $x\in (0,\infty)$ show $f(x)=x^4$ is convex. I know it is convex since $f''(x)>0$ . How can we show by using definition? do we have to use Let L be linear space. $t\in[0,1],y\in L,f(xt+y(1-t))=(xt)^4+4(xt)^3((1-t)y)^1+6(xt)^2((1-t)y)^2+4(xt)(((1-t)y)^3+((1-t)y)^4$
edit: $(xt)^4+4(xt)^3((1-t)y)^1+6(xt)^2((1-t)y)^2+4(xt)(((1-t)y)^3+((1-t)y)^4\le tf(x)+4tf(x)+10tf(x)(1-t)f(y)+(1-t)f(y)$