3

I want to solve the following system of congruences:

$ x \equiv 1 \mod 2 $

$ x \equiv 2 \mod 3 $

$ x \equiv 3 \mod 4 $

$ x \equiv 4 \mod 5 $

$ x \equiv 5 \mod 6 $

$ x \equiv 0 \mod 7 $

I know, but do not understand why, that the first two congruences are redundant. Why is this the case? I see that the modulo of the congruences are not pairwise relatively prime, but why does this cause a redundancy or contradiction? Further, why is it that in the solution to this system, we discard the first two congruences and not

$ x \equiv 3 \mod 4 $

$ x \equiv 5 \mod 6 $

being that $ gcd(3,6) = 3 $ and $gcd(2,4) = 2$ ?

EDIT:

How is the modulo of the unique solution effected if I instead consider the system of congruences without the redundancy i.e. does $M = 4 * 5 * 6 * 7$ or does it remain $M= 2*3*4*5*6*7$?

David D.
  • 149
  • $x\equiv 1 \pmod 2$ means that $x$ is odd. And $x \equiv 3 \pmod 4$ implies that $x$ is odd, but the implication does not work the other way around. – Klaas van Aarsen Aug 03 '14 at 21:10
  • 2
    For your edit: you can't apply Chinese Remainder Theorem if the moduli are not relatively prime. You can very easily reach a contradiction this way (e.g. $x \equiv 1 \bmod 2$ and $x \equiv 2 \bmod 4$ has no solutions). – Hao Ye Aug 04 '14 at 01:59

3 Answers3

3

Note that:

$$x\equiv 3 \mod 4 \Rightarrow x= 4k+3\Rightarrow x\equiv 1 \mod 2\\ x\equiv 5\mod 6 \Rightarrow x = 6k'+5\Rightarrow x\equiv 2\mod 3 $$

Darth Geek
  • 12,296
3

Hint $\ x\equiv -1\ $ mod $\,2,3,4,5,6\iff x\equiv -1 \pmod m\ $ for $\, m = {\rm lcm}(2,3,4,5,6) = {\rm lcm}(4,5,6)$

because $\ 2,3,4,5,6\mid x\!+\!1\iff 4,5,6\mid x\!+\!1,\ $ since $\,4,6\mid x\!+\!1\,\Rightarrow\,2,3\mid x\!+\!1$

Bill Dubuque
  • 272,048
0

$x \equiv 1 \mod 2$

$x \equiv 2 \mod 3$

$x \equiv 3 \mod 4 \implies x \equiv 1 \pmod 2$

$x \equiv 4 \mod 5$

$x \equiv 5 \mod 6 \iff \left.\begin{cases} x \equiv 1 \mod 2 \\ x \equiv 2 \mod 3 \end{cases} \right\}$ By the CRT.

$x \equiv 0 \mod 7$


So first we replace $x \equiv 5 \mod 6$ with $\left.\begin{cases} x \equiv 1 \mod 2 \\ x \equiv 2 \mod 3 \end{cases} \right\}$


$x \equiv 1 \mod 2$

$x \equiv 2 \mod 3$

$x \equiv 3 \mod 4 \implies x \equiv 1 \pmod 2$

$x \equiv 4 \mod 5$

$x \equiv 1 \mod 2$

$x \equiv 2 \mod 3$

$x \equiv 0 \mod 7$


Now, because $x \equiv 1 \pmod 2$ is redundant, we remove all instanced of it and we remove all but one instance of $x \equiv 2 \mod 3$.


$x \equiv 2 \mod 3$

$x \equiv 3 \mod 4$

$x \equiv 4 \mod 5$

$x \equiv 0 \mod 7$


In this case, we can cheat a little if we change the first three congruences to equivalent congruences.

$ \left. \begin{array}{l} x \equiv -1 \mod 3 \\ x \equiv -1 \mod 4 \\ x \equiv -1 \mod 5 \end{array} \right\} \ \iff x \equiv -1 \mod 60$ (Again, by the CRT.)

$x \equiv 0 \mod 7$


So we now have


$x \equiv -1 \mod 60$

$x \equiv 0 \mod 7$


To solve this, we start with $x \equiv 0 \mod 7$, which implies that $x = 7n$ for some integer $n$. Substitute that into $x \equiv -1 \mod 60$ and you get

$7n \equiv -1 \mod 60$

So we need to find $\dfrac 17 \pmod{60}$ The most fundamental way to do this is to inspect numbers congruent to $1 \pmod{60}$ until we find one that is a multiple of $7$. At worst, we will have to examint $7$ such numbers.

$1, 61, 121, 181, 241, \color{red}{301}$

Since $7 \times 43 = 301$, then $\dfrac 17 \equiv 43 \pmod{60}$. So we conclude that $n \equiv -43 \equiv 17 \mod{60}$.

Then $x = 7n = 119 \mod{420}$.