We have
$$
\int^{1}_{0}\int^{1}_{0}\frac{\log u\log v}{(1-uv)(1-u)(1-v)}dudv=3\zeta(3)
$$
Also
$$
\int^{1}_{0}\int^{1}_{0}\frac{(uv)^k\log u\log v}{(1-u)(1-v)}dudv=Z(2,k+1)\psi'(k+1)\textrm{, where }Re(k)>-1
$$
The function $Z(s,k)=\sum^{\infty}_{l=0}\frac{1}{(l+k)^s}$ is Hurwitz zeta function.
Hence
$$
\sum^{a-1}_{k=0}\int^{1}_{0}\int^{1}_{0}\frac{(uv)^k\log u\log v}{(1-u)(1-v)}dudv
=\int^{1}_{0}\int^{1}_{0}\frac{(1-(uv)^a)\log u\log v}{(1-uv)(1-u)(1-v)}dudv.
$$
Hence
$$
\sum^{\infty}_{k=1}\left(\psi'(k+a)\right)^2=\int^{1}_{0}\int^{1}_{0}\frac{(uv)^a\log u \log v}{(1-u v)(1-u)(1-v)}dudv=3\zeta(3)-\sum^{a-1}_{k=0}Z(2,k+1)\psi'(k+1)
$$
By trying to generalize the problem we have
$$
C_{\nu}=\underbrace{\int^{1}_{0}\ldots\int^{1}_{0}}_{\nu}\frac{\log u_1\ldots \log u_{\nu}du_1\ldots du_{\nu}}{(1-u_1\ldots u_{\nu})(1-u_1)\ldots(1-u_{\nu})}=\sum^{\infty}_{l=0}\left(\int^{1}_{0}\frac{u^l\log u}{1-u}du\right)^{\nu}=
$$
$$
=\sum^{\infty}_{l=0}\left(-Z(2,l+1)\right)^{\nu}
$$
Also
$$
\underbrace{\int^{1}_{0}\ldots\int^{1}_{0}}_{\nu}\frac{u_1^k\ldots u_{\nu}^k \log u_1\ldots\log u_{\nu}du_1\ldots du_{\nu}}{(1-u_1)\ldots (1-u_{\nu})}=(-1)^{\nu}Z(2,k+1)(\psi'(k+1))^{\nu-1}
$$
Hence
$$
\sum^{a-1}_{k=0}\underbrace{\int^{1}_{0}\ldots\int^{1}_{0}}_{\nu}\frac{u_1^k\ldots u_{\nu}^k \log u_1\ldots\log u_{\nu}du_{1}\ldots du_{\nu}}{(1-u_1)\ldots (1-u_{\nu})}=(-1)^{\nu}\sum^{a-1}_{k=0}Z(2,k+1)(\psi'(k+1))^{\nu-1}=
$$
$$
=\underbrace{\int^{1}_{0}\ldots\int^{1}_{0}}_{\nu}\frac{(1-u_1^a\ldots u_{\nu}^a) \log u_1\ldots\log u_{\nu}du_1\ldots du_{\nu}}{(1-u_1\ldots u_{\nu})(1-u_1)\ldots (1-u_{\nu})}.
$$
Hence
$$
\underbrace{\int^{1}_{0}\ldots\int^{1}_{0}}_{\nu}\frac{(u_1^a\ldots u_{\nu}^a) \log u_1\ldots\log u_{\nu}du_1\ldots du_{\nu}}{(1-u_1\ldots u_{\nu})(1-u_1)\ldots (1-u_{\nu})}=
$$
$$
=C_{\nu}+(-1)^{\nu-1}\sum^{a-1}_{k=0}Z(2,k+1)(\psi'(k+1))^{\nu-1}
$$
And finaly
$$
\sum^{\infty}_{k=1}\left(\psi'(k+a)\right)^{\nu}=C_{\nu}+(-1)^{\nu-1}\sum^{a-1}_{k=0}Z(2,k+1)(\psi'(k+1))^{\nu-1}
$$
$$S_n = 3 \zeta(3) - n\zeta(2)^2 +2(nH_{n-1,2} - H_{n-1})\zeta(2) - \sum_{k=1}^{n-1}H_{k,2}^2,$$
where $H_n$ is the $n$-th Harmonic number and $H_{n,2} = \sum_i^n 1/i^2$
– Alexander Vlasev Jan 28 '18 at 22:13