$$ \mbox{Show that}\quad \int^{\infty}_{0}{x^{p - 1}\ln\left(x\right) \over 1 + x} =-\pi^{2}\csc\left(p\pi\right)\cot\left(p\pi\right) $$
$$ \mbox{I guess I have to use the fact that}\quad \int^{\infty}_{0}{x^{p - 1} \over 1 + x} =\pi\csc\left(p\pi\right),\quad\mbox{please give me some idea.} $$
Thank you.