How is this below possible:
$ \sum_{i=1}^\infty 1/i = \infty $
It stands:
$$\sum_{i=1}^{\infty} \frac{1}{i}=\infty \\ \\ \text{ AND } \\ \\ \lim_{n \to +\infty} \sum_{i=1}^{n} \frac{1}{i}=\infty$$
BUT NOT:
$$\sum_{i=1}^{n} \frac{1}{i}=\infty$$
EDIT:
If the series $\sum_{n=1}^{\infty} \frac{1}{n}$ would converge,from the Cauchy criterion,there would be a $n_0 \in \mathbb{N}$ such that $\forall m>n \geq n_0:$ $$\frac{1}{n+1}+\frac{1}{n+2}+ \dots +\frac{1}{m}<\frac{1}{2}$$
Specifically:
$$\frac{1}{n+1}+\frac{1}{n+2}+\dots+\frac{1}{n+n}<\frac{1}{2}$$
But:
$$\frac{1}{n+1}+\frac{1}{n+2}+\dots+\frac{1}{n+n} \geq \frac{1}{n+n} +\frac{1}{n+n} \dots+\frac{1}{n+n} =\frac{n}{2n}=\frac{1}{2}$$
Therefore,the series diverges.