I want to speed up the convergence of a series involving rational expressions the expression is $$\sum _{x=1}^{\infty }\left( -1\right) ^{x}\dfrac {-x^{2}-2x+1} {x^{4}+2x^{2}+1}$$ If I have not misunderstood anything the error in the infinite sum is at most the absolute value of the last neglected term. The formula for the $n$th term is $\dfrac {-x^{2}-2x+1} {x^{4}+2x^{2}+1}$ from the definition of the series. To get the series I used Maxima the computer algebra system. I have noticed that to get 13 decimal places of the series one must wade through $312958$ terms of the series. I had to kill the computer GUI and some other system processes and run Maxima to compute the sum. I took about 5 minutes. The final sum I obtained was $0.3106137076850$. Is there any way to speed up the convergence of the sum? In general is there any way to speed up the convergence of the sum of $$\sum _{x=1}^{\infty }\left( -1\right) ^{x}\dfrac {p(x)} {q(x)}$$
where both ${p(x)}$ and ${q(x)}$ are rational functions?