How does one show that: if $\gcd( x, y) = 1$, then $\gcd( x+y, x^2 - xy + y^2) = 1\,{\rm or }\,3$.
Asked
Active
Viewed 1,063 times
0
-
http://math.stackexchange.com/questions/257392/if-gcda-b-1-then-gcdab-a2-abb2-1-or-3 – lab bhattacharjee Aug 01 '14 at 09:34
1 Answers
1
Let $d=(x+y,x^2-xy+y^2)$
$$d \mid x+y \Rightarrow d \mid (x+y)^2$$ $$ d \mid x^2-xy+y^2 \Rightarrow d \mid (x+y)^2-3xy$$
$$d \mid (x+y)^2-((x+y)^2-3xy) \Rightarrow d \mid 3xy (*)$$
Let $(d,x)=m>1$,then it has a prime factor,let $q$.
$$q \mid x \\ q \mid d,d \mid x+y \Rightarrow q \mid x+y \\ \text{So, } q \mid x+y-x=y \\ \text{As } q \mid x \text{ and } q \mid y \Rightarrow q \mid (x,y)=1 \ \text{ ,that is a contradiction.} \\ \text{So,we conclude that } (d,x)=1$$
Similarly,we show that $(d,y)=1$
$$(*) \xrightarrow[(d,y)=1]{(d,x)=1} d \mid 3$$
Therefore,: $ d=1 \text{ or } d=3$.

evinda
- 7,823