Let $\lbrace a_n\rbrace$ be a convergent sequence with $a_n \to L$
Define $$ b_n = \frac{ a_1 + a_2 + ... a_n}{n} \forall n \in \mathbb Z_+ $$
Prove that $\lbrace b_n\rbrace$ is convergent with $ b_n \to L$
I tried to go through $\displaystyle \lim_{n \to \infty} f \{a_n \} = f \lim_ {n \to \infty} \{ a_n \} $ but I can't figure out $f$.