Given $f_n \rightarrow f$ a.e. Does $||f_n||_p \rightarrow ||f||_p$ imply $f_n\rightarrow f$ in $L^p$?
Clearly this does not hold for $p = \infty$, since given functions with same hight, pointwise convergence does not imply uniform convergence. And when $p=1$, it becomes Scheffe's lemma.
For $ 1< p <\infty$, we have
$$\int |f_n - f|^p dm \leq 2^{p-1}\bigg(\int |f_n|^p + |f|^p dm\bigg). $$ Using General Lebesgue Dominated Convergent theorem, we have $$\lim_n \int |f_n - f|^p dm = \int \lim_n |f_n - f|^p dm,$$ if and only if $$\lim_n \int |f_n|^p + |f|^p dm = \int \lim_n |f_n|^p + |f|^p dm$$ which holds from the assumption that $||f_n||_p \rightarrow ||f||_p$.
Is my argument correct? Thanks!