How can we compute $$I=\int_0^{+\infty } \frac{\log(t)}{1+t^2} \, dt$$ Mathematica gives $I=0$.
Asked
Active
Viewed 181 times
How can we compute $$I=\int_0^{+\infty } \frac{\log(t)}{1+t^2} \, dt$$ Mathematica gives $I=0$.