-1

How can we compute $$I=\int_0^{+\infty } \frac{\log(t)}{1+t^2} \, dt$$ Mathematica gives $I=0$.

Tunk-Fey
  • 24,849
user50618
  • 2,589

1 Answers1

11

Hint

Write

$$\int_0^\infty \frac{\log(t)}{1+t^2} \, dt=\int_0^1 \frac{\log(t)}{1+t^2} \, dt+\int_1^\infty \frac{\log(t)}{1+t^2} \, dt$$ and then change the variable $t=\frac1x$ for one of the two last integrals.