Other series expansions can be found by noticing that:
$$\int\limits_{0}^{\frac{\pi}{2}} \frac{\log{\left(\cos{\left(x \right)} \right)}}{x}\, dx = -\frac{\pi}{2}\int\limits_{0}^{1}\int\limits_{0}^{1} \tan{\left(\frac{\pi x y}{2} \right)}\, dx\, dy \tag{1}$$
which enables us to use the series expansion of the tangent for $-\pi/2<x<\pi/2$:
$$\tan{\left(x \right)} = \sum_{n=1}^{\infty} \frac{\left(-1\right)^{n - 1} \cdot 2^{2 n} x^{2 n - 1} \left(2^{2 n} - 1\right) B_{2 n}}{\left(2 n\right)!} \tag{2}$$
to obtain:
$$\begin{aligned}
\int\limits_{0}^{\frac{\pi}{2}} \frac{\log{\left(\cos{\left(x \right)} \right)}}{x}\, dx &= \sum_{n=1}^{\infty} \frac{\left(- \pi^{2}\right)^{n} \left(4^{n} - 1\right) B_{2 n} \int\limits_{0}^{1}\int\limits_{0}^{1} \left(x y\right)^{2 n - 1}\, dx\, dy}{\left(2 n\right)!}\\
&=\sum_{n=1}^{\infty} \frac{\left(- \pi^{2}\right)^{n} \left(4^{n} - 1\right) B_{2 n}}{4 n^{2} \left(2 n\right)!}\\
&=\sum_{n=1}^{\infty} \frac{\left(- 1 + \frac{1}{2^{2 n}}\right) \zeta\left(2 n\right)}{2 n^{2}}\\
&=\sum_{n=1}^{\infty} \sum_{k=1}^{\infty} \frac{\left(- 1 + \frac{1}{2^{2 n}}\right)}{2 n^{2}k^{2 n}}\\
&=\frac{1}{2}\sum_{k=1}^{\infty} \left(\operatorname{Li}_{2}\left(\frac{1}{4 k^{2}}\right) - \operatorname{Li}_{2}\left(\frac{1}{k^{2}}\right)\right)\\
&=-\frac{1}{2}\sum_{k=1}^{\infty} \operatorname{Li}_{2}\left(\frac{1}{\left(2 k - 1\right)^{2}}\right)
\end{aligned} \tag{3}$$
where $B_{n}$ is a Bernoulli number, $\zeta$ is the Riemann zeta function, and $\operatorname{Li}_{2}$ is a polylogarithm of order 2 (aka dilogarithm or Spence's function). Unlike this answer from the op, on this occasion we do not obtain poly-Stieltjes constants but rather a higher order generalisation of sorts to the dilogarithm. The final expression in terms of the dilogarithm can be calculated to arbitrary precision in Python's Sympy package and agrees with the numerical evaluation of the integral $−0.941237674287746$ at $1e20$ terms.
More generally, following the above method it can be shown that:
$$\begin{aligned}
\int\limits_{0}^{1} x^{- s} \log{\left(\cos{\left(\frac{\pi x}{2} \right)} \right)}\, dx &= - \sum_{n=1}^{\infty} \frac{\left(1 - 4^{- n}\right) \zeta\left(2 n\right)}{n \left(2 n - s + 1\right)}\\
&=- \sum_{n=1}^{\infty}\sum_{k=1}^{\infty} \frac{1}{n \left(2 n - s + 1\right)\left(2 k - 1\right)^{2 n}}
\end{aligned} \tag{4}$$
and in particular, by using:
$$\sum_{n=1}^{\infty} \frac{z^{2 n}}{n \left(2 n - 1\right)} = \left(1 - z\right) \log{\left(1 - z \right)} + \left(z + 1\right) \log{\left(z + 1 \right)} \tag{5}$$
the special case with $s=2$ can be expressed in closed form in terms of the poly-Stieltjes constants:
$$\int\limits_{0}^{1} x^{- 2} \log{\left(\cos{\left(\frac{\pi x}{2} \right)} \right)}\, dx = - \sum_{n=1}^{\infty} \frac{1}{n \left(2 n - 1\right)} \\- \sum_{k=1}^{\infty} \left(\left(1 - \frac{1}{2 k + 1}\right) \log{\left(1 - \frac{1}{2 k + 1} \right)} + \left(1 + \frac{1}{2 k + 1}\right) \log{\left(1 + \frac{1}{2 k + 1} \right)}\right) \tag{6}$$
$$\int\limits_{0}^{1} x^{- 2} \log{\left(\cos{\left(\frac{\pi x}{2} \right)} \right)}\, dx = - \log{\left(\pi \right)} +\frac{\gamma_1(0,\frac{1}{2})}{2} - \frac{\gamma_1(0,-\frac{1}{2})}{2} \tag{7}$$
where the limit as $z$ tends to 1 in $\left(5\right)$ was used to derive:
$$\sum_{n=1}^{\infty} \frac{1}{n \left(2 n - 1\right)} = 2 \log{\left(2 \right)} \tag{8}$$
the product formula for the cosine was used to derive:
$$\log{\left(\frac{\pi}{4}\right)}=\sum_{k=1}^{\infty} \log{\left(1 - \frac{1}{\left(2 k + 1\right)^{2}} \right)} \tag{9}$$
and the poly-Stieltjes constants are defined as:
$$\gamma_k(a,b) = \lim_{N\to+\infty}\left(\sum_{n=1}^N \frac{\log^k (n+a)}{n+b}-\frac{\log^{k+1} \!N}{k+1}\right) \tag{10}$$