Here's yet another way:
\begin{align}
& \int \cos^2\theta\,d\theta = \int(\cos\theta) \Big(\cos\theta\,d\theta\Big) = \int u\,dv = uv-\int v\,du \\[10pt]
= {} & -\cos\theta\sin\theta -\int(\sin\theta)\, \Big( -\sin\theta\, d\theta\Big) \\[10pt]
= {} & -\cos\theta\sin\theta + \int \sin^2\theta\,d\theta = -\cos^2\theta + \int(1-\cos^2\theta)\,d\theta \\[10pt]
= {} & -\cos\theta\sin\theta + \theta -\int\cos^2\theta\,d\theta.
\end{align}
So we have shown that
$$
\int \cos^2\theta\,d\theta = -\cos\theta\sin\theta + \theta -\int\cos^2\theta\,d\theta.
$$
Now add the same thing to both sides:
\begin{align}
& \phantom{{}+{}}\int \cos^2\theta\,d\theta = -\cos\theta\sin\theta + \theta -\int\cos^2\theta\,d\theta. \\[12pt]
& {} + \int \cos^2\theta\,d\theta \phantom{{}= -\cos\theta\sin\theta + \theta }{} + \int\cos^2\theta\,d\theta \\[15pt]
& \phantom{+{}}2\int\cos^2\theta\,d\theta = -\cos\theta\sin\theta + \theta + \text{constant}
\end{align}
and then divide both sides by $2$.