I'm searching for a proof of one impressive Ramanujan result. Not one in particular, the only request I have is to be really impressive. For example $$ \sqrt{\phi+2}-\phi=\frac{e^{-2\pi/5}}{1+\frac{e^{-2\pi}}{1+\frac{e^{-4\pi}}{1+\cdots}}} $$ where $\phi=\frac{1+\sqrt5}{2}$.
Or maybe $$ \frac1{\pi}=\frac{2\sqrt2}{9801}\sum_{n=0}^{+\infty}\frac{(4n)!(1103+26390n)}{(n!)^4396^{4n}}\;. $$
Can someone suggest me a precise reference where to find such a proof?
Thank you all