$\mathrm{tr}(AB)=\sum\limits_{i=1}^n \sum\limits_{j=1}^n a_{ij}*b_{ji}$
$\mathrm{tr}(A)*\mathrm{tr}(B)=\sum\limits_{i=1}^n a_{ii}*\sum\limits_{i=1}^n b_{ii}$
Therefore $\mathrm{tr}(AB) \neq \mathrm{tr}(A)*\mathrm{tr}(B)$
Is the proof valid?
$\mathrm{tr}(AB)=\sum\limits_{i=1}^n \sum\limits_{j=1}^n a_{ij}*b_{ji}$
$\mathrm{tr}(A)*\mathrm{tr}(B)=\sum\limits_{i=1}^n a_{ii}*\sum\limits_{i=1}^n b_{ii}$
Therefore $\mathrm{tr}(AB) \neq \mathrm{tr}(A)*\mathrm{tr}(B)$
Is the proof valid?
It is false. Let's think small. Consider the identity matrix, of order $n > 1$. Then: $$n = \mathrm{tr}(I) = \mathrm{tr}(I \cdot I) \neq \mathrm{tr}(I)~ \mathrm{tr}(I) = n^2$$ It is important to try some silly cases and gain intuition about the affirmation before tackling summations, etc.
You have not given a reason why those expressions are not identically equal. They will be equal in some special cases. The easiest way to prove that such an identity doesn't hold is to give a counterexample. Try 2-by-2 matrices.