I know that $\Gamma \left( x \right) $ is the unique function on $x \in (0, \infty)$ such that
$f \left( 1 \right) =1$
$f(x+1)=xf(x)$
${\frac {d^{2}}{d{x}^{2}}}ln(f \left( x \right))>0$
However define the set of functions $g(x)=\Gamma(x){e^{2\pi inx}}\:for\:n\in \Bbb Z$ and $i=\sqrt{-1}$, then
$g(1)=\Gamma(1)e^{2\pi in}=1$
$g(x+1)=\Gamma(x+1){e^{2\pi in(x+1)}}=x\Gamma(x){e^{2\pi inx}}{e^{2\pi in}}=x\Gamma(x){e^{2\pi inx}}=xg(x)$
${\frac {d^{2}}{d{x}^{2}}}ln(g \left( x \right))={\frac {d^{2}}{d{x}^{2}}}(ln(\Gamma(x))+2\pi i n x)={\frac {d^2}{dx^2}}ln(\Gamma(x))>0$
so therefore $g(x)=\Gamma(x)$ for $x\in(0,\infty)$. However, this is obviously not true, but it satisfies all the conditions of the Bohr-Mollerup theorem. Why is this? Is this some other version of the Gamma function?
If anyone's curious, I got this idea from this post