Let $y_n = \pi/2-x_n + n\pi$, then $y_n\in(0,\pi/2)$ and
$$\frac{1}{\tan y_n}=\frac{\pi}{2}-y_n+n\pi\Leftrightarrow \tan y_n=\frac{1}{\frac{\pi}{2}-y_n+n\pi}$$
Since $y\in(0,\pi/2)$, it follows that
$$\frac{1}{n\pi}> \tan y_n > \frac{1}{(n+1/2)\pi}\\
\Rightarrow 1 > n\pi\tan y_n > \frac{1}{(1+\frac{1}{2n})}$$
By squeeze theorem we have that $\lim_{n\rightarrow\infty}n\pi \tan y_n=1$, but we also know that $\lim_{n\rightarrow\infty}\frac{\tan y_n}{y_n} = \lim_{y\rightarrow 0}\frac{\tan y_n}{y_n} = 1$ therefore
$$\lim_{n\rightarrow +\infty} n\pi \,y_n = 1\\
\Leftrightarrow \lim_{n\rightarrow +\infty} n\pi(\pi/2 - x_n + n\pi) = 1\\
\Leftrightarrow \lim_{n\rightarrow +\infty} n\pi(x_n - \pi/2 + n\pi - \frac{1}{n\pi})=0
\Leftrightarrow \lim_{n\rightarrow +\infty} n\pi r_n=0$$