1

I am asked to calculate a complex integral. how to compute $\displaystyle \int \limits_{-\infty}^{\infty}\frac{x^4}{1+x^8}dx$ with residue theorem?

Git Gud
  • 31,356

2 Answers2

2

Some hints that might help you along the way:

Start off by writing the expression as $$ \oint_{C} \frac{z^4}{1 + z^8}dz $$ where $C$ is the contour. Now find the residues: $$ 1 + z_n^8 = 0, z_n \in C $$ Then the integral value is $$ 2 \pi i \sum Res_{z=z_n}f(z) $$

Noxet
  • 760
2

You might be interested in an alternative method using the Beta function. Note that the integrand is even, so \begin{align} \int_{-\infty}^{\infty}\frac{x^4}{1+x^8}dx &=2\int_{0}^{\infty}\frac{x^4}{1+x^8}dx\\ \end{align} Use the substitution $x=u^{1/8}$, then $dx=\frac{1}{8}u^{-7/8}du$. The integral becomes \begin{align} 2\int_{0}^{\infty}\frac{x^4}{1+x^8}dx &=\frac{1}{4}{\int^{\infty}_{0}\frac{u^{-3/8}}{1+u}du}\\ &=\frac{1}{4}\int^{1}_{0}\frac{(\frac{y}{1-y})^{-3/8}}{1+\frac{y}{1-y}}\frac{dy}{(1-y)^2}\\ &=\frac{1}{4}\int^{1}_{0}y^{-3/8}(1-y)^{-5/8}dy\\ &=\frac{1}{4}B(5/8,\ 3/8)\\ &=\frac{\Gamma(5/8)\ \Gamma(3/8)}{4\ \Gamma(1)}\\ &=\frac{\pi}{4}\csc{\frac{3\pi}{8}} \end{align} I have made use of the definition of the Beta function and Euler's Reflection Formula.

If you prefer a complex analysis approach, the poles are at \begin{align} z=e^{i (2n+1)\pi /8}, \ n\in\mathbb{Z}, \ 0\le n \le 7 \end{align} Figure out which singularities lie in your contour and proceed with the integration.

SuperAbound
  • 5,554