How to solve this:
$$\lim_{n \rightarrow \infty} \frac{3}{n} \sum_{k=1}^n \left(\frac{2n+3k}{n} \right)^2$$
The answer is supposed to be 39.
My attempt:
$$\frac{3}{n}\sum\left(4+\frac{12}{n}k+\frac{9}{n^{2}}k^{2}\right)=\frac{3}{n}\left(4+\frac{12}{n}\sum k+\frac{9}{n^{2}}\sum k^{2}\right)=\frac{3}{n}\left(4+\frac{12}{n}\frac{n}{2}\left(n+1\right)+\frac{9}{n^{2}}\frac{n}{6}\left(n+1\right)\left(2n+1\right)\right)=3\left(6+3\right)=27\neq39$$