3

How to solve this:

$$\lim_{n \rightarrow \infty} \frac{3}{n} \sum_{k=1}^n \left(\frac{2n+3k}{n} \right)^2$$

The answer is supposed to be 39.

My attempt:

$$\frac{3}{n}\sum\left(4+\frac{12}{n}k+\frac{9}{n^{2}}k^{2}\right)=\frac{3}{n}\left(4+\frac{12}{n}\sum k+\frac{9}{n^{2}}\sum k^{2}\right)=\frac{3}{n}\left(4+\frac{12}{n}\frac{n}{2}\left(n+1\right)+\frac{9}{n^{2}}\frac{n}{6}\left(n+1\right)\left(2n+1\right)\right)=3\left(6+3\right)=27\neq39$$

Yal dc
  • 703
  • 11
  • 19

1 Answers1

5

$$\lim_{n\to\infty}\frac3n\sum_{k=1}^n\left(2+3\frac kn\right)^2$$

$$=3\int_0^1(2+3x)^2\ dx$$

$$\text{as }\lim_{n \to \infty} \frac1n\sum_{r=1}^n f\left(\frac rn\right)=\int_0^1f(x)dx$$