Consider Lebesgue spaces $L^p(\Omega)$, $\Omega$ is a bounded domain.
Let $f \in L^p(\Omega)$ for all $p$.
Is it true that $f \in L^\infty(\Omega)$?
Consider Lebesgue spaces $L^p(\Omega)$, $\Omega$ is a bounded domain.
Let $f \in L^p(\Omega)$ for all $p$.
Is it true that $f \in L^\infty(\Omega)$?