I was trying to solve this problem: Closed form for $\int_0^1\log\log\left(\frac{1}{x}+\sqrt{\frac{1}{x^2}-1}\right)\mathrm dx$
In the procedure I followed, I came across the following sum: $$\sum_{k=1}^{\infty} (-1)^{k-1}k\left(\frac{\ln(2k+1)}{2k+1}-\frac{\ln(2k-1)}{2k-1}\right)$$
I cannot think of any approaches which would help me in evaluating the sum.
Any help is appreciated. Thanks!