How do I compute this integral ?
$$I=\int_{0}^{1}\ln{\left(\ln{\left(\frac{1}{x}+\sqrt{\frac{1}{x^2}-1}\right)}\right)}dx$$
In the math chatroom someone suggests setting $x=\operatorname{sech}(t)$ and that the result immediately follows.
I don't agree with it
because $$\frac{1}{x}+\sqrt{\frac{1}{x^2}-1}=\frac{e^t+e^{-t}}{2}+\sqrt{\cosh^2{t}-1}=e^t$$ and $$dx=\frac{e^t}{(e^{2t}+1)^2}dt$$
so $$I=\int_{0}^{\infty}\ln(t)\frac{e^{t}}{(e^{2t}+1)^2}dt$$ Thanks for your help.
\dfrac
should not be used in titles. See: [Guidelines for good use of $\LaTeX$ in question titles}(http://meta.math.stackexchange.com/questions/9687/guidelines-for-good-use-of-latex-in-question-titles) – Martin Sleziak Jul 17 '14 at 09:50\dfrac
should not be used, other than in exceptional circumstances! – user1729 Jul 17 '14 at 12:22\dfrac
and\frac
render the same in this post, because the fractions are taking new lines.) – user1729 Jul 17 '14 at 12:42