9

I was trying to evaluate the following sum: $$\sum_{k=0}^{\infty} \frac{1}{(3k+1)^3}$$

W|A gives a nice closed form but I have zero idea about the steps involved to evaluate the sum. How to approach such sums?

Following is the result given by W|A: $$\frac{13\zeta(3)}{27}+\frac{2\pi^3}{81\sqrt{3}}$$

Any help is appreciated. Thanks!

Pranav Arora
  • 11,014
  • 2
    So far, the answers have amounted to demonstrating that the Hurwitz zeta function is (almost) the same as the polygamma function (see Brad's comment below), and then appealing to knowledge of that. Can anyone provide a direct derivation? – Semiclassical Jul 17 '14 at 04:37
  • Also: judging from equations (11) and (12) of the Polygamma page at Mathworld, the result given above has a broad generalization. Can anyone prove result directly? – Semiclassical Jul 17 '14 at 04:43
  • 3
    On a related note, $~\displaystyle\sum_{n=-\infty}^\infty\frac1{n+a}=\pi\cdot\cot(\pi a).~$ Differentiating twice with regard to a, we have $~\displaystyle\sum_{n=-\infty}^\infty\frac1{(n+a)^3}=\pi^3\cdot\cot(\pi a)\cdot\csc^2(\pi a).~$ Letting $a=\dfrac13$ , we get $\dfrac{4\pi^3}{3\sqrt3}$ , which is double the value of your second term, save for a factor of $\dfrac1{3^3}=\dfrac1{27}$ – Lucian Jul 17 '14 at 10:21

3 Answers3

7

Notice that $$ \sum_{k=0}^{\infty} \frac{1}{(3k+1)^{3}} = \frac{1}{27} \sum_{n=0}^{\infty} \frac{1}{(k+\frac{1}{3})^{3}} = - \frac{1}{54} \psi_{2}\left(\frac{1}{3} \right) $$

where $\psi_{2}(x)$ is the second derivative of the digamma function.

Differentiating the multiplication formula for the digamma function twice and letting $q=3$,

$$\psi_{2}(x) + \psi_{2} \left( x+ \frac{1}{3} \right) + \psi_{2} \left(x+ \frac{2}{3} \right) = 27 \psi_{2}(3x) .$$

Therefore, $$ \begin{align} \psi_{2} \left(\frac{1}{3} \right) + \psi_{2} \left( \frac{2}{3} \right) &= 27 \psi_{2}(1) - \psi_{2}(1) \\ &=27 \left( -2 \zeta(3) \right) + 2 \zeta(3) = -52 \zeta(3). \tag{1}\end{align} $$

And differentiating the reflection formula for the digamma function twice,

$$ \psi_{2} (x) - \psi_{2}(1-x) = - 2\pi^{3} \cot(\pi z) \csc^{2}(\pi z) .$$

Therefore, $$\psi_{2} \left(\frac{1}{3} \right) - \psi_{2} \left( \frac{2}{3}\right) = - \frac{8 \pi^{3}}{3 \sqrt{3}} . \tag{2}$$

Adding $(1)$ and $(2)$,

$$ \psi_{2} \left( \frac{1}{3}\right) = -26 \zeta(3) - \frac{4 \pi^{3}}{3 \sqrt{3}} .$$

So

$$ \sum_{k=0}^{\infty} \frac{1}{(3k+1)^{3}} = \frac{13 \zeta(3)}{27} + \frac{2 \pi^{3}}{81 \sqrt{3}} .$$

5

$\newcommand{\+}{^{\dagger}} \newcommand{\angles}[1]{\left\langle\, #1 \,\right\rangle} \newcommand{\braces}[1]{\left\lbrace\, #1 \,\right\rbrace} \newcommand{\bracks}[1]{\left\lbrack\, #1 \,\right\rbrack} \newcommand{\ceil}[1]{\,\left\lceil\, #1 \,\right\rceil\,} \newcommand{\dd}{{\rm d}} \newcommand{\down}{\downarrow} \newcommand{\ds}[1]{\displaystyle{#1}} \newcommand{\expo}[1]{\,{\rm e}^{#1}\,} \newcommand{\fermi}{\,{\rm f}} \newcommand{\floor}[1]{\,\left\lfloor #1 \right\rfloor\,} \newcommand{\half}{{1 \over 2}} \newcommand{\ic}{{\rm i}} \newcommand{\iff}{\Longleftrightarrow} \newcommand{\imp}{\Longrightarrow} \newcommand{\isdiv}{\,\left.\right\vert\,} \newcommand{\ket}[1]{\left\vert #1\right\rangle} \newcommand{\ol}[1]{\overline{#1}} \newcommand{\pars}[1]{\left(\, #1 \,\right)} \newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}} \newcommand{\pp}{{\cal P}} \newcommand{\root}[2][]{\,\sqrt[#1]{\vphantom{\large A}\,#2\,}\,} \newcommand{\sech}{\,{\rm sech}} \newcommand{\sgn}{\,{\rm sgn}} \newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}} \newcommand{\ul}[1]{\underline{#1}} \newcommand{\verts}[1]{\left\vert\, #1 \,\right\vert} \newcommand{\wt}[1]{\widetilde{#1}}$ $\ds{}$ \begin{align} \color{#66f}{\large\sum_{k = 0}^{\infty}{1 \over \pars{3k + 1}^{3}}} &={1 \over 27}\sum_{k = 0}^{\infty}{1 \over \pars{k + 1/3}^{3}} =\left. -\,{1 \over 27}\,\partiald{}{\mu}\sum_{k = 0}^{\infty} {1 \over \pars{k + \mu}\pars{k + 1/3}}\,\right\vert_{\,\mu\ =\ {1/3}} \\[3mm]&=-\,{1 \over 27}\,\partiald{}{\mu}\bracks{% \Psi\pars{\mu} - \Psi\pars{1/3} \over \mu - 1/3}_{\mu\ =\ {1/3}} =-\,{1 \over 54}\,\Psi''\pars{1 \over 3} \\[3mm]&=\color{#66f}{\large{1 \over 243}\bracks{2\root{3}\pi^{3} + 117\zeta\pars{3}}} \approx 1.0208 \end{align}

See a Hurwitz Zeta Function link.

Felix Marin
  • 89,464
4

You can also start from $$\sum_{k=0}^{m} \frac{1}{(3k+1)^3}=\frac{1}{54} \left(\psi ^{(2)}\left(m+\frac{4}{3}\right)-\psi ^{(2)}\left(\frac{1}{3}\right)\right)$$ which simplifies to $$\sum_{k=0}^{m} \frac{1}{(3k+1)^3}=\frac{1}{54} \left(\psi ^{(2)}\left(m+\frac{4}{3}\right)+26 \zeta (3)+\frac{4 \pi ^3}{3 \sqrt{3}}\right)$$and take the limit for an infinite value of $m$. This leads to the answer given by Felix Marin and by Wolfram Alpha.

In fact, there is a nice generalization for $$\sum_{k=0}^{\infty} \frac{1}{(ak+b)^c}=a^{-c} \zeta \left(c,\frac{b}{a}\right)$$ in which appears Hurwitz Zeta function.