I can't prove this statement, can anybody show me how to prove it?
$$f:\mathbb{C}\rightarrow \mathbb{C} \in \mathcal{O}(\mathbb{C}), \exists n\in \mathbb{N}, R >0 , M>0 : |f(z)| \le M|z|^{n} \ \ \forall |z|>R \Rightarrow \deg(f)\le n $$
To show is that if there exists such an $M$, that then $f$ is a polynomial of max degree $n$. I started like this:
$$f(z) = \sum_{n=0}^{\infty} a_n (z-z_0)^n$$ So if I put this into the inequality: $$|f(z)| = \left| \sum_{n=0}^{\infty} a_n (z-z_0)^n \right| \le M |z|^n .$$