Using the Fourier series of $\ln^3(2\cos x):$
$$
\ln^3(2\cos x)=3x^2\ln(2\cos x)+3\sum_{n=1}^\infty(-1)^n\frac{H_{n-1}^2-H_{n-1}^{(2)}}{n}\cos(2nx),$$
we get
$$
\int_0^{\frac{\pi}{2}}x^3\ln^3(2\cos x)\,dx$$
$$=3\int_0^{\frac{\pi}{2}}x^5\ln(2\cos x)\,dx+3\sum_{n=1}^\infty(-1)^n\frac{H_{n-1}^2-H_{n-1}^{(2)}}{n}\int_0^{\frac{\pi}{2}}x^3\cos(2nx)\,dx.$$
By using the Fourier series of $\ln(2\cos x)$, we get the first integral:
$$\int_0^{\frac{\pi}{2}}x^5\ln(2\cos x)\,dx=\frac{45}{8}\zeta(2)\zeta(5)-\frac{225}{32}\zeta(3)\zeta(4)-\frac{1905}{512}\zeta(7).$$
For the other integral,
$$\sum_{n=1}^\infty(-1)^n\frac{H_{n-1}^2-H_{n-1}^{(2)}}{n}\int_0^{\frac{\pi}{2}}x^3\cos(2nx)\,dx$$
$$\sum_{n=1}^\infty(-1)^n\frac{H_{n-1}^2-H_{n-1}^{(2)}}{n}\left(\frac{9\zeta(2)(-1)^n}{8n^2}-\frac{3(-1)^n}{8n^4}+\frac{3}{8n^4}\right)$$
$$=\frac{9}{8}\zeta(2)\sum_{n=1}^\infty\frac{H_{n-1}^2-H_{n-1}^{(2)}}{n^3}-\frac38\sum_{n=1}^\infty\frac{H_{n-1}^2-H_{n-1}^{(2)}}{n^5}+\frac38\sum_{n=1}^\infty(-1)^n\frac{H_{n-1}^2-H_{n-1}^{(2)}}{n^5}.$$
The first sum:
$$\sum_{n=1}^\infty\frac{H_{n-1}^2-H_{n-1}^{(2)}}{n^3}=\frac12\sum_{n=1}^\infty(H_{n-1}^2-H_{n-1}^{(2)})\int_0^1 x^{n-1}\ln^2(x)\, dx$$
$$=\frac12\int_0^1 \ln^2(x)\left(\sum_{n=1}^\infty(H_{n-1}^2-H_{n-1}^{(2)})x^{n-1}\right)\, dx$$
$$=\frac12\int_0^1 \ln^2(x)\left(\frac{\ln^2(1-x)}{1-x}\right)\, dx$$
$$\overset{1-x\to x}{=}\frac12\int_0^1\frac{\ln^2(x)\ln^2(1-x)}{x}\, dx$$
$$=\sum_{n=1}^{\infty}\frac{H_{n-1}}{n}\int_0^1 x^{n-1} \ln^2(x)\, dx$$
$$=2\sum_{n=1}^{\infty}\frac{H_{n-1}}{n^4}$$
$$=4\zeta(5)-2\zeta(2)\zeta(3).$$
The second sum: Similarly,
$$\sum_{n=1}^\infty\frac{H_{n-1}^2-H_{n-1}^{(2)}}{n^5}=\frac1{24}\int_0^1\frac{\ln^4(x)\ln^2(1-x)}{1-x}\, dx$$
$$=10\zeta(7)-4\zeta(2)\zeta(5)-\frac52\zeta(3)\zeta(4),$$
which follows from beta function.
The third sum: Using the fact
$$\sum_{k=1}^{n-1}\frac{H_{k-1}}{k}=\frac{H_{n-1}^2-H_{n-1}^{(2)}}{2},$$
the sum can be written as
$$\sum_{n=1}^\infty(-1)^n\frac{H_{n-1}^2-H_{n-1}^{(2)}}{n^5}=2\sum_{n=1}^{\infty}\frac{(-1)^n}{n^5}\sum_{k=1}^{n-1}\frac{H_{k-1}}{k}=2\zeta(\bar{5},1,1)$$
putting all together, we get
$$\int_{0}^{\frac{\pi}{2}} x^3 \ln^3(2 \cos x)\, dx = \frac{45}{512} \zeta(7)-\frac{9}{8} \zeta(2)\zeta(5)-\frac{225}{32} \zeta(3)\zeta(4)-\frac{9}{4}\zeta(\bar{5},1,1),$$
which matches Olivier's result above.
In my opinion, the sum $\zeta(\bar{5},1,1)$ seems more complicated than the main integral itself but I just wanted to prove the relation between the two.