Problem : If $\displaystyle\int^\infty_0 \frac{\log(1+x^2)}{(1+x^2)}\,dx = \lambda \int^1_0 \frac{\log(1+x)}{(1+x^2)}\,dx$ then find the value of $\lambda$.
I am not getting any clue how to proceed as if I put $(1+x^2)\,dx =t $ then its derivative is not available. Please suggest how to proceed in this. Thanks.