In other words, there is no integer $x \in \mathbb{N}$ such that $n-1<x<n$.
We set $A=\{n-1 \in \mathbb{N}: \text{ if } x \in \mathbb{R} \text{ with } n-1<x<n \text{ then } x \notin \mathbb{N} \}$.
We want to show that $A$ is inductive .
We define $B=1 \cup \{x \in \mathbb{R}: x \geq 2\}$
$B$ is obviously inductive.
So if $1<x<2$ then $x \notin B \Rightarrow x \notin \mathbb{N}$
- Let $n-1 \in A$. We want to show that $n \in A$, that means that we want to show that if $\exists x \in \mathbb{R}$ with $n<x<n+1$, then $x \notin \mathbb{N}$.
Since $x>n$ then $x>1$.
Let $x \in \mathbb{N}$.
From the sentence:
$\text{ If } n \in \mathbb{N} \text{ and } n \neq 1, \text{ then } n-1 \in \mathbb{N}$
we have that $x-1 \in \mathbb{N}$.
But $n-1<x-1<n$.
That means that $n-1 \notin A$. That is a contradiction.
So, $x \notin \mathbb{N}$.
So, $n \in A$.
$$$$
Therefore, $A$ is inductive.