Could you explain how to find this limit?
$\lim_{n \rightarrow \infty} \sum^n_{k=1} \frac{1}{k+n}$
Could you explain how to find this limit?
$\lim_{n \rightarrow \infty} \sum^n_{k=1} \frac{1}{k+n}$
$\lim_{n\rightarrow \infty } \sum_{k=1}^n \frac{1}{k+n}=\lim_{n\rightarrow \infty } \sum_{k=1}^n \frac{1}{\frac{k}{n}+1}\cdot \frac{1}{n}=\int_0^1 \frac{dx}{x+1}=\ln 2$.