I'd like to make some complement to Mohamed Hashi's answer.
Let $X$ be the blow-up of $\mathbb{A}^2$ at $O=(0,0)$,that is $$X=\{((x,y),(u:t))\in \mathbb{A}^2 \times \mathbb{P}^1\mid xu=yt\}.$$
Let $\mathbb{A}^1_u,\mathbb{A}^1_t$ be the affine cover of $\mathbb{P}^1$,then
$$\mathbb{A}^2 \times \mathbb{P}^1=(\mathbb{A}^2 \times\mathbb{A}^1_u) \cup(\mathbb{A}^2 \times\mathbb{A}^1_t).$$
We have the following isomorphism:
$$X_u=X\cap(\mathbb{A}^2 \times\mathbb{A}^1_u)\longrightarrow \mathbb{A}^2,$$
where $((x,y),(1:t))\longmapsto (y,t)\longmapsto ((yt,y),(1:t))$.Under this isomorphism,we may write
$$\varphi^{-1}(Y)\cap X_u=\{(0,t))\in \mathbb{A}^2\mid t
\in k\}\cup \{(y,t)\in \mathbb{A}^2\mid 1=t^2(yt+1)\},$$
$$\varphi^{-1}(Y-O)\cap X_u=\{(y,t)\in \mathbb{A}^2\mid 1=t^2(yt+1)\}- \{(0,\pm 1))\},$$
since $\overline{\varphi^{-1}(Y-O)}^X\cap X_u=\overline{\varphi^{-1}(Y-O)\cap X_u}^{X_u}$ is closed in $ X_u\cong\mathbb{A}^2$,we have
$$\overline{\varphi^{-1}(Y-O)}^X\cap X_u=\{(y,t)\in \mathbb{A}^2\mid 1=t^2(yt+1)\},$$
hence $\tilde{Y}_u=\tilde{Y}\cap(\mathbb{A}^2 \times\mathbb{A}^1_u)=\{(y,t)\in \mathbb{A}^2\mid 1=t^2(yt+1)\}.$
Similarly,under the isomorphism $X_t=X\cap(\mathbb{A}^2 \times\mathbb{A}^1_t)\cong\mathbb{A}^2$,we get
$$\tilde{Y}_t=\tilde{Y}\cap(\mathbb{A}^2 \times\mathbb{A}^1_t)=\{(x,u)\in \mathbb{A}^2\mid u^2=x+1)\}.$$
Now come back to our question.
Question 1:why $\tilde{Y}=\tilde{Y}\cap(\mathbb{A}^2 \times\mathbb{A}^1_t)$?
Note that $\mathbb{A}^2 \times \mathbb{P}^1=(\mathbb{A}^2 \times\mathbb{A}^1_t) \cup\{((x,y),(1:0))\in \mathbb{A}^2 \times \mathbb{P}^1\},$
so \begin{equation}
\begin{split} \tilde{Y}&=\tilde{Y}_t\cup (\tilde{Y}\cap\{((x,y),(1:0))\in \mathbb{A}^2 \times \mathbb{P}^1\})\\
&=\tilde{Y}_t\cup (\tilde{Y}\cap\{((x,y),(1:0))\in \mathbb{A}^2 \times \mathbb{P}^1\cap X\})\\
&=\tilde{Y}_t\cup (\tilde{Y}_u\cap\{((0,y),(1:0))\in X_u\}).
\end{split}
\end{equation}
But under our isomorphism $X\cap(\mathbb{A}^2 \times\mathbb{A}^1_u)\cong\mathbb{A}^2$,we know that $$\{((0,y),(1:0))\in X_u\}=\{(y,0)\in \mathbb{A}^2\mid y\in k\},$$and
$$\tilde{Y}_u=\{(y,t)\in \mathbb{A}^2\mid 1=t^2(yt+1)\}.$$
Therefore $\tilde{Y}_u\cap\{((0,y),(1:0))\in X_u\}=\emptyset$,we conclude that $\tilde{Y}=\tilde{Y}_t$.
Question 3:what about $\tilde{Y}_u$?
In fact,we have $\tilde{Y}=\tilde{Y}_u \cup \{((-1,0),(0:1))\in \tilde{Y}_t\}$.
Question 2:
Pionts of $\varphi^{-1}(O)$ are in 1-1 correspondence with the set of lines through $O$ in $\mathbb{A}^2$,points $((0,0),(0,\pm 1))$ correspond to lines $y=\pm x$ whose slope are $\pm 1$.Note that lines $y=\pm x$ are the tangent of the two branches of $Y$ at $O$.
Added:there is a more direct approach concerning question 1.In the same way,we may look at the following isomorphism:$$X_u\longrightarrow Z(x-yt)\subset\mathbb{A}^3,$$
where $((x,y),(1:t))\longmapsto (x,y,t)\longmapsto ((yt,y),(1:t))$.Under this isomorphism,we may write \begin{equation} \begin{split}
\varphi^{-1}(Y)\cap X_u&=Z(y^2-x^3-x^2,x-yt)\subset \mathbb{A}^3,\\
\varphi^{-1}(Y-O)\cap X_u&=Z(1-t^2-yt^3,x-yt)-(0,0,\pm 1)\subset\mathbb{A}^3,\\ \overline{\varphi^{-1}(Y-O)}^X\cap X_u &=\overline{\varphi^{-1}(Y-O)\cap X_u}^{X_u}=Z(1-t^2-yt^3,x-yt), \end{split}
\end{equation}
hence we have $\tilde{Y}_u=\tilde{Y}\cap(\mathbb{A}^2 \times\mathbb{A}^1_u)=Z(1-t^2-yt^3,x-yt)$.
Similarly,$\tilde{Y}_t=\tilde{Y}\cap(\mathbb{A}^2 \times\mathbb{A}^1_t)=Z(1+x-u^2,xu-y)$.
And since \begin{equation} \begin{split}
\tilde{Y}\cap\{((x,y),(1:0))\in \mathbb{A}^2 \times \mathbb{P}^1\}
&=\tilde{Y}\cap\{((x,y),(1:0))\in \mathbb{A}^2 \times \mathbb{P}^1\}\cap X_u\\
&=\tilde{Y}_u\cap\{((0,y),(1:0))\in X_u\}\\
&=\tilde{Y}_u\cap\{((0,y,0)\in \mathbb{A}^3\}\\
&=\emptyset. \end{split} \end{equation}
Illustration:
1.The first equality holds because$\tilde{Y}\cap\{((x,y),(1:0))\in \mathbb{A}^2 \times \mathbb{P}^1\}$ is in fact a subset of $X_u$.
2.The second equality holds because in $X_u$,we have $u=1$ and $x=yt$.
3.In the third equality,we used the isomorphism $X_u\cong Z(x-yt)$.
3.The last equality holds because $\tilde{Y}_u=Z(1-t^2-yt^3,x-yt)$,and $$Z(1-t^2-yt^3,x-yt)\cap\{((0,y,0)\in \mathbb{A}^3\}=\emptyset.$$
Finally,we see that $\tilde{Y}=\tilde{Y}_t\cup(\tilde{Y}\cap\{((x,y),(1:0))\in \mathbb{A}^2 \times \mathbb{P}^1\})=\tilde{Y}_t\cup \emptyset=\tilde{Y}_t$.
Edit3:In this example,points in $\tilde{Y} \cap \varphi^{-1}(O)$ correspond to tangent of the two branches of $Y$ at $O$,we will see that this is true for any curves in $\mathbb{A}^2$.
Let $Y=Z(f)$ be a curve in $\mathbb{A}^2$,where $f(x,y)=f_r+\cdots+f_d$ and $f_i$ are homogeneous polynomials in $x,y, ~\forall r\leq i\leq d$.We will assume that $r\geq 2$ so that $O=(0,0)$ is a singular point of $Y$.As usual,since $X_u\cong\mathbb{A}^2$,we may write \begin{equation} \begin{split}
\varphi^{-1}(Y)\cap X_u&=\{(0,t))\in \mathbb{A}^2\mid t
\in k\}\cup \{(y,t)\in \mathbb{A}^2\mid \frac{f(yt,y)}{y^r}=0\},\\
\varphi^{-1}(Y-O)\cap X_u&= \{(y,t)\in \mathbb{A}^2\mid \frac{f(yt,y)}{y^r}=0\}-\{(0,t)\in \mathbb{A}^2\mid f_r(t,1)=0\},\\ \tilde{Y}_u=\overline{\varphi^{-1}(Y-O)}^X\cap X_u &=\{(y,t)\in \mathbb{A}^2\mid \frac{f(yt,y)}{y^r}=0\}\\
\tilde{Y}_u \cap \varphi^{-1}(O)
&=\{(0,t)\in \mathbb{A}^2\mid f_r(t,1)=0\} \end{split}
\end{equation}
Similarly,we have $$\tilde{Y}_t \cap \varphi^{-1}(O)
=\{(0,u)\in \mathbb{A}^2\mid f_r(1,u)=0\}.$$
Next we glue $\tilde{Y}_u \cap \varphi^{-1}(O)$ and $\tilde{Y}_t \cap \varphi^{-1}(O)$ to see that$$\tilde{Y} \cap \varphi^{-1}(O)\cong D=\{(x:y)\in \mathbb{P}^1\mid f_r(x,y)=0\}.$$In waht follows,we let $D_1=\{(1:y)\in \mathbb{P}^1\mid f_r(1,y)=0\}$, $D_2=\{(x:1)\in \mathbb{P}^1\mid f_r(x,1)=0\}$.The glueing is carried out by the following isomorphism:
$$\tilde{Y}_u \cap \varphi^{-1}(O)\cong D_2:(0,t)\mapsto (t:1),$$
$$\tilde{Y}_t \cap \varphi^{-1}(O)\cong D_1:(0,u)\mapsto (1:u).$$
Now we see that $\tilde{Y} \cap \varphi^{-1}(O)\cong D=\{(x:y)\in \mathbb{P}^1\mid f_r(x,y)=0\},$which is a finite set.Further more,we note that $f_r(x,y)$ is a homogeneous polynomial of degree $r$ in $k[x,y]$ and $k$ is algebraically closed,so $f_r(x,y)$ can be factored into linear terms:$$f_r(x,y)=(a_1x-b_1y)\cdots(a_rx-b_ry).$$
It follows that $$\tilde{Y} \cap \varphi^{-1}(O)=\{(b_1:a_1),...,(b_r:a_r)\}. $$
So we can say that points $(b_i:a_i)$ in $\tilde{Y} \cap \varphi^{-1}(O)$ corresponde to the so called tangent directions $a_ix-b_iy$.But we know that tangent directions are exactly the tangents of branchs of $Y$ through $O$.
We conclude that points in $\tilde{Y} \cap \varphi^{-1}(O)$ corresponde to the tangents of branchs of Y through $O$.