Let $\phi : \mathbb{Q}_{>0} \to \mathbb{Z}$ be the group morphism defined by $\phi(p) = p$ for $p$ a prime number.
It follows that $\phi(1)=0$, $\phi(a.b) = \phi(a)+\phi(b)$, $\phi(a^{-1}) = -a$ and in general:
$$\phi(\prod_i p_i^{n_i}) = \sum_i n_i p_i$$ with $p_i$ a prime number and $n_i \in \mathbb{Z}$.
Let $\mathcal{K} = ker (\phi) $, a subgroup of $\mathbb{Q}_{>0}$.
Then, $\mathcal{K}= \{ r \in \mathbb{Q}_{>0} \vert r=\prod_i p_i^{n_i} \text{ and } \sum_i n_i p_i = 0 \}$
Question: Is $\mathcal{K}$ a dense subset of $\mathbb{R}_{ +}$ ?