5

Given the value of sinh(x)

for example sinh(x) = 3/2

How can I calculate the value of cosh(x) ?

user8028
  • 431
  • 11
    Use identity: $\cosh^2(x)-\sinh^2(x)=1$ – alans Jul 11 '14 at 18:47
  • 5
    @alans When you hover your mouse over "add comment" you will see the following: Use comments to ask for more information or to suggest improvements. Avoid answering questions in comments. – Fly by Night Jul 11 '14 at 19:26

5 Answers5

13

Use the identity $\cosh^2x-\sinh^2x \equiv 1$. If $\sinh x = \frac{3}{2}$ then $$\cosh^2x - \left(\frac{3}{2}\right)^{\! 2} = 1$$ $$\cosh^2x - \frac{9}{4} = 1$$ $$\cosh^2x = \frac{13}{4}$$ It follows that $\cosh x = \pm\frac{1}{2}\sqrt{13}$. Since $\cosh x \ge 1$ for all $x \in \mathbb{R}$ we have $\cosh x = \frac{1}{2}\sqrt{13}$.

Fly by Night
  • 32,272
9

The trick is....

$$\cosh^2x-\sinh^2x=1$$

ClassicStyle
  • 1,399
1

Most books I have seen use this way to solve this problem using the same identity mentioned in the accepted answer: $$\sqrt{1+\sinh^2x}=\cosh x$$

$\therefore \sqrt{1+(\frac{3}{2})^2}=\cosh x$

$ \frac{\sqrt{13}}{2}=\cosh x$

mchid
  • 164
  • 1
  • 11
0

Using $\cosh^2x-\sinh^2x=1$ you can evaluate it.

But unlike circular trig functions, there is only a single value for

$ \cosh( \sinh^{-1}(x)) $

Narasimham
  • 40,495
-2

Do you want to say that $cosh^2x-sinh^2x=1$? Yes that is correct because of this: $1/4[e^{2x}+2+e^{-2x}-e^{2x}+2-e^{-2x}]= 1/4 \times 4=1$

Chappers
  • 67,606