In the construction of types of numbers, we have the following sequence:
$$\mathbb{R} \subset \mathbb{C} \subset \mathbb{H} \subset \mathbb{O} \subset \mathbb{S}$$
or:
$$2^0 \mathrm{-ions} \subset 2^1 \mathrm{-ions} \subset 2^2 \mathrm{-ions} \subset 2^3 \mathrm{-ions} \subset 2^4 \mathrm{-ions} $$
or:
"Reals" $\subset$ "Complex" $\subset$ "Quaternions" $\subset$ "Octonions" $\subset$ "Sedenions"
With the following "properties":
- From $\mathbb{R}$ to $\mathbb{C}$ you gain "algebraic-closure"-ness (but you throw away ordering).
- From $\mathbb{C}$ to $\mathbb{H}$ we throw away commutativity.
- From $\mathbb{H}$ to $\mathbb{O}$ we throw away associativity.
- From $\mathbb{O}$ to $\mathbb{S}$ we throw away multiplicative normedness.
The question is, what lies on the right side of $\mathbb{S}$, and what do you lose when you go from $\mathbb{S}$ to one of these objects ?