EDIT: This question is actually an attempt to solve this. Please take a look.
Let $A$ be a symmetric postive-definite $n\times n$ matrix, i.e. $A\in\mathbb{S}_{++}^{n}$ Also, let $\mathbf{x}\in\mathbb{R}^n$. Let $Q\colon\mathbf{R}^n\to\mathbb{R}^{*}_{+}$ be the following quadratic form $$ Q(\mathbf{x})=\mathbf{x}^TA\mathbf{x}. $$
If we apply SVD (Singular Value Decomposition) on $A$, we have $$ A=P\Lambda P^T, $$ where $P$ is an orthogonal matrix, and $\Lambda=\operatorname{diag}\{\lambda_1,\ldots,\lambda_n\}$ is the diagonal matrix of the (positive) eigenvalues of $A$, $\lambda_i>0$, $i=1,\ldots,n$.
I would like to express the above quadratic form, $Q(\mathbf{x})$, in terms of the $2$-norm of $\mathbf{x}$, as well as the matrix $A$ (in some way, for instance in terms of the $2$-norm of $\Lambda$, or something else).
What I have thought so far is as follows: $$ Q(\mathbf{x}) = \mathbf{x}^TA\mathbf{x} = \mathbf{x}^T P \Lambda P^T \mathbf{x} = \Big(\mathbf{x}^T P \Lambda^{\frac{1}{2}}\Big)\Big(\Lambda^{\frac{1}{2}} P^T \mathbf{x}\Big) = \Big(\big(P \Lambda^{\frac{1}{2}}\big)^T\mathbf{x}\Big)^T \Big(\Lambda^{\frac{1}{2}} P^T \mathbf{x}\Big). $$
Now, if we set $\mathbf{x}_a=\big(P \Lambda^{\frac{1}{2}}\big)^T\mathbf{x}\in\mathbf{R}^n$, then the quadratic can be rewritten as $$ Q(\mathbf{x}) = \mathbf{x}_a^T\mathbf{x}_a = \big\lVert \mathbf{x}_a \big\rVert^2_2 = \Big\lVert \big(P \Lambda^{\frac{1}{2}}\big)^T\mathbf{x} \Big\rVert^2_2. $$
As far as I know (thanks to @DanielFischer - if I do not misunderstand his words), the following holds true $$ Q(\mathbf{x}) = \Big\lVert \big(P \Lambda^{\frac{1}{2}}\big)^T\mathbf{x} \Big\rVert^2_2 \leq \Big\lVert \big(P \Lambda^{\frac{1}{2}}\big)^T \Big\rVert^2_2 \Big\lVert \mathbf{x} \Big\rVert^2_2. $$
My question is: (a) Are all the above correct? (b) Is there any way of getting rid of the inequality, granted that $A$ is symmetric and positive-definite? Moreover, could we define a function $f\colon\mathbb{R}^n\times\mathbb{S}_{++}^{n}\to\mathbb{R}$, such that $f(\mathbf{x},A)=Q(\mathbf{x})$, where $f$ is expressed in terms of the $2$-norm of $\mathbf{x}$, as well as in terms of $A$ in some way (for instance, in terms of $\Lambda$, etc.)? (c) Any other suggestions?
Thanks in advance!