Let $\Omega = {\omega_1, \omega_2, ...}$ be some countable set. Let $\mathfrak{F} = 2^{\Omega}$. Consider a sequence {$p_n$} in [0,1] s.t. $\sum_{n=1}^{\infty} p_n = 1$.
Define P: $\mathfrak{F} \to [0,1]$ as follows:
$\forall A \in \mathfrak{F}, P(A) = \sum_{\omega_{n} \in A} p_n$.
Then P is a probability measure. To show, we need to show it satisfies Kolmogorov's axioms.
Pf:
1 $P(\Omega) = 1$
2 $P(A) \geq 0 \ \forall A \in \mathfrak{F}$
3 For a pairwise disjoint collection of sets {$A_k$}$_{k=1}^{\infty}$, $P(\bigcup _{k=1}^{\infty} A_k) = \sum_{k=1}^{\infty} P(A_k)$
To establish $\sigma$-additivity, we must show that for a pairwise disjoint collection of sets {$A_k$}$_{k=1}^{\infty}$, $\sum_{\omega_{n} \in \bigcup _{k=1}^{\infty} A_k} p_n = \sum_{k=1}^{\infty} \sum_{\omega_{n} \in A_k} p_n$.
LHS = $\sum_{\omega_{n} \in \bigcup _{k=1}^{\infty} A_k} p_n$
$= \sum_{\omega_{n} \in \bigcup _{k=1}^{\infty} A_k} p_n (1_{A_1}(\omega_n) + 1_{A_2}(\omega_n) + ...)$
where $1_{A_k}(\omega_n) = 1$ if $\omega_n \in A_k$ and $0$ o/w. That is, $1_{A_1}(\omega_n) + 1_{A_2}(\omega_n) + ... = 1$ iff $\omega_{n} \in \bigcup _{k=1}^{\infty} A_k$
$= \sum_{\omega_{n} \in \bigcup _{k=1}^{\infty} A_k} p_n (\sum_{k=1}^{\infty} 1_{A_k}(n))$
$= \sum_{\omega_{n} \in \bigcup _{k=1}^{\infty} A_k} \sum_{k=1}^{\infty} p_n 1_{A_k}(n)$
$= \sum_{k=1}^{\infty} \sum_{\omega_{n} \in \bigcup _{k=1}^{\infty} A_k} p_n 1_{A_k}(n)$ (*)
$= \sum_{k=1}^{\infty} \sum_{\omega_{n} \in A_k} p_n$ = RHS
QED
(*) What is the justification for this step?
My prof says that $\Sigma_{n=1}^{\infty} \Sigma_{m=1}^{\infty} a_{mn} = \Sigma_{m=1}^{\infty} \Sigma_{n=1}^{\infty} a_{mn}$ holds if $a_{mn} \geq 0$. Is this true? This seems to suggest otherwise. I have a feeling that this step is instead justified by $\sum_{n=1}^{\infty} p_n = 1 < \infty$ rather than $p_n \geq 0$, but then again $\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} p_n = \sum_{m=1}^{\infty} 1 = \infty$.
I find it hard to believe that just because the summand is nonnegative, we can switch order of summation since I recall there were certain conditions to say $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y) dx dy = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y) dy dx$...something like uniform continuity? Definitely not just f being $\geq 0$.
What about for integrals?
– BCLC Jul 11 '14 at 04:31