Given the following functions:
$$ F(t)= \int_0^\infty e^{-tx}\dfrac{\sin{x}}{x}\,dx, \quad t>0$$ $$ F_s(t)= \int_0^s e^{-tx}\dfrac{\sin{x}}{x}\,dx, \quad t \geq 0, s>0$$
Show that $\lim_{s \to \infty}F_s(t) = F(t)$ uniformly for $t \in (0,+\infty)$
This is what I've tried:
$$\lim_{s \to \infty}{F_s(t)} = F(t) \, \textrm{uniformly} \iff \lim_{s \to \infty} || F_s(t) -F(t) || _\infty = 0$$
$$\begin{array}{rcl} \lim_{s \to \infty}|| F_s(t) -F(t) || _\infty &=& \lim_{s \to \infty} \sup \, \{ | \int_0^se^{-tx}\dfrac{\sin{x}}{x}\,dx - \int_o^\infty e^{-tx}\dfrac{\sin{x}}{x}\,dx|, t>0\} \\ &=& \lim_{s \to \infty} \sup \, \{ | \int_0^se^{-tx}\dfrac{\sin{x}}{x}\,dx - \lim_{L \to \infty} \int_o^L e^{-tx}\dfrac{\sin{x}}{x}\,dx|, t>0\}\\ &\overset{(*)}{=}& \lim_{s \to \infty} \lim_{L \to \infty} \sup \, \{ | \int_0^se^{-tx}\dfrac{\sin{x}}{x}\,dx - \int_o^L e^{-tx}\dfrac{\sin{x}}{x}\,dx|, t>0\} \\ &= & 0\end{array}$$
Im not sure about the step marked $(*)$. Is this right? If it is wrong, how could I show that?