Let $\epsilon >0$ be given. Then consider the quantity
$$|x^2-4x+3|=|x-3||x-1|$$
If we know that $|x-1|<\delta$, then we see this means
$$|x-3| = |x-1-2|$$
$$\le |x-1|+2$$
$$<2+\delta.$$
Hence we see
$$|x^2-4x+3|<\delta^2+2\delta$$
so if we do
$$(\delta+1)^2=\delta^2+2\delta+1=\epsilon+1$$
we see this gives a positive value
$$\delta=-1+\sqrt{1+\epsilon}.$$
we have the right result.
For the second one it's even easier. Let $\epsilon >0$ be given.
Then we see that $$\left|{1\over x+2}\right|<\epsilon\iff |x+2|>{1\over\epsilon}$$
Since $x\to -\infty$, we can assume $x<0$ so that $|x+2|=|x|-2$, so choose $N={1\over\epsilon}+2$ and for $x< N$ we have the desired result.