Start with the matrix
$$
\mathbf{A} \in \mathbb{C}^{m\times n}_{\rho}
$$
and consider the most general case of rank deficiency where $\rho < \min \left( m, n\right)$.
The singular value decomposition is
$$
\begin{align}
\mathbf{A} &=
\mathbf{U} \, \Sigma \, \mathbf{V}^{*} \\
%
&=
% U
\left[ \begin{array}{cc}
\color{blue}{\mathbf{U}_{\mathcal{R}}} & \color{red}{\mathbf{U}_{\mathcal{N}}}
\end{array} \right]
% Sigma
\left[ \begin{array}{cccc|cc}
\sigma_{1} & 0 & \dots & & & \dots & 0 \\
0 & \sigma_{2} \\
\vdots && \ddots \\
& & & \sigma_{\rho} \\\hline
& & & & 0 & \\
\vdots &&&&&\ddots \\
0 & & & & & & 0 \\
\end{array} \right]
% V
\left[ \begin{array}{c}
\color{blue}{\mathbf{V}_{\mathcal{R}}}^{*} \\
\color{red}{\mathbf{V}_{\mathcal{N}}}^{*}
\end{array} \right] \\
%
& =
% U
\left[ \begin{array}{cccccccc}
\color{blue}{u_{1}} & \dots & \color{blue}{u_{\rho}} & \color{red}{u_{\rho+1}} & \dots & \color{red}{u_{m}}
\end{array} \right]
% Sigma
\left[ \begin{array}{cc}
\mathbf{S}_{\rho\times \rho} & \mathbf{0} \\
\mathbf{0} & \mathbf{0}
\end{array} \right]
% V
\left[ \begin{array}{c}
\color{blue}{v_{1}^{*}} \\
\vdots \\
\color{blue}{v_{\rho}^{*}} \\
\color{red}{v_{\rho+1}^{*}} \\
\vdots \\
\color{red}{v_{n}^{*}}
\end{array} \right]
%
\end{align}
$$
This presents orthonormal bases for both the domain and the codomain. The Fundamental Theorem of Linear Algebra prescribed four fundamental subspaces:
$$
\begin{align}
%
\mathbf{C}^{m} =
\color{blue}{\mathcal{R} \left( \mathbf{A} \right)} \oplus
\color{red} {\mathcal{N} \left( \mathbf{A}^{*} \right)} \\
%
\mathbf{C}^{n} =
\color{blue}{\mathcal{R} \left( \mathbf{A}^{*} \right)} \oplus
\color{red} {\mathcal{N} \left( \mathbf{A} \right)}
%
\end{align}
$$
$$
\begin{array}{ll}
%
column \ vectors & span \\\hline
%
\color{blue}{u_{1}} \dots \color{blue}{u_{\rho}} &
\color{blue}{\mathcal{R} \left( \mathbf{A} \right)} \\
%
\color{blue}{v_{1}} \dots \color{blue}{v_{\rho}} &
\color{blue}{\mathcal{R} \left( \mathbf{A}^{*} \right)} \\
%
\color{red}{u_{\rho+1}} \dots \color{red}{u_{m}} &
\color{red}{\mathcal{N} \left( \mathbf{A}^{*} \right)} \\
%
\color{red}{v_{\rho+1}} \dots \color{red}{v_{n}} &
\color{red}{\mathcal{N} \left( \mathbf{A} \right)} \\
%
\end{array}
$$
The SVD can be expressed solely in terms of range space quantities. This is the thin or economical SVD
$$
\mathbf{A} =
\color{blue}{\mathbf{U}_{\mathcal{R}}} \,
\mathbf{S} \,
\color{blue}{\mathbf{V}_{\mathcal{R}}}^{*}
$$
Write the dimensions explicitly
$$
\begin{array}{ccccc}
%
\mathbf{A} & =
& \color{blue}{\mathbf{U}_{\mathcal{R}}}
& \mathbf{S}
& \color{blue}{\mathbf{V}_{\mathcal{R}}}^{*} \\
%
m \times n & & m \times \rho & \rho \times \rho & \rho \times n \\[5pt]
%
\mathbf{A} & =
%
& \mathbf{U}
& \Sigma
& \mathbf{V}^{*} \\
%
m \times n & & m \times m & m \times n & n \times n \\
%
\end{array}
$$