The key idea is an ideal-theoretic generalization of $\rm\color{#c00}{Euclid's}$ key idea in his proof that there are infinitely many primes $\rm p.\,$ Namely, if $\,f\,$ is divisible by every prime $\,p\,$ then $\,1+ nf\,$ has no prime divisors so is a unit. In a similar way, replacing "divides" by "contains", and $\,n\,$ by $\rm\,x\,$ we obtain
Hint $\rm\ f\in J(R[x])\Rightarrow\: f\:$ in all max $\rm P\:\color{#c00}\Rightarrow\:1\! +\! x\,f\:$ in no max $\rm P\:\Rightarrow\:1\!+\!x\,f\:$ unit $\ \ $ QED
The proof uses the well-known fact that every nonunit $\,r\,$ has a prime "divisor" (i.e. container), since $\,(r)\ne 1\,\Rightarrow\, (r)\,$ is contained in some maximal (so prime) ideal $\rm\,P.\ $ Hence, $ $ contrapositively, $ $ if $\,r\,$ is not contained in any max ideal, then $\,r\,$ is a unit.
Remark $\ $ Below is a generalization of the key idea, from my post giving a constructive generalization of Euclid's proof (for any ring with fewer units than elements).
Theorem $\ $ TFAE in ring $\rm\:R\:$ with units $\rm\:U,\:$ ideal $\rm\:J,\:$ and Jacobson radical $\rm\:Jac(R)\:.$
$\rm(1)\quad J \subseteq Jac(R),\quad $ i.e. $\rm\:J\:$ lies in every max ideal $\rm\:M\:$ of $\rm\:R\:.$
$\rm(2)\quad 1+J \subseteq U,\quad\ \ $ i.e. $\rm\: 1 + j\:$ is a unit for every $\rm\: j \in J\:.$
$\rm(3)\quad I\neq 1\ \Rightarrow\ I+J \neq 1,\qquad\ $ i.e. proper ideals survive in $\rm\:R/J\:.$
$\rm(4)\quad M\:$ max $\rm\:\Rightarrow M+J \ne 1,\quad $ i.e. max ideals survive in $\rm\:R/J\:.$
Proof $\: $ (sketch) $\ $ With $\rm\:i \in I,\ j \in J,\:$ and max ideal $\rm\:M,$
$\rm(1\Rightarrow 2)\quad j \in all\ M\ \Rightarrow\ 1+j \in no\ M\ \Rightarrow\ 1+j\:$ unit.
$\rm(2\Rightarrow 3)\quad i+j = 1\ \Rightarrow\ 1-j = i\:$ unit $\rm\:\Rightarrow I = 1\:.$
$\rm(3\Rightarrow 4)\ \:$ Let $\rm\:I = M\:$ max.
$\rm(4\Rightarrow 1)\quad M+J \ne 1 \Rightarrow\ J \subseteq M\:$ by $\rm\:M\:$ max.