While reading a textbook on Laplace transform, I found this sentence.
The inverse Laplace transform of $\mathcal{L}_X(s)=\left(\frac{\lambda_1}{s+\lambda_1}\right)\left(\frac{\lambda_2}{s+\lambda_2}\right)\cdots\left(\frac{\lambda_n}{s+\lambda_n}\right)$ is $$f_X(x) = \sum_{i=1}^n \alpha_i\lambda e^{-\lambda_i x}\quad\text{where}\quad \alpha_i = \prod_{\begin{smallmatrix}1\le j\le n\\ j\neq i\end{smallmatrix}}\frac{\lambda_j}{\lambda_j - \lambda_i}.$$
How can I prove it?
Note that the coefficients $\alpha_i$'s can be written as $\alpha_i = \ell_i(0)$ where each $\ell_i(x)$ is the Lagrange basis polynomial $$\ell_i(x) = \prod_{\begin{smallmatrix}1\le j\le n\\ j\neq i\end{smallmatrix}} \frac{x-x_j}{x_i-x_j} = \frac{(x-x_1)}{(x_i-x_1)} \cdots \frac{(x-x_{j-1})}{(x_i-x_{j-1})} \frac{(x-x_{j+1})}{(x_i-x_{j+1})} \cdots \frac{(x-x_n)}{(x_j-x_n)}$$ associated with points $\lambda_1,...,\lambda_n$.