What is the coefficient of $x^2y^2z^3$ in $(x + 2 y + z)^7 $?
This is the question at a test and the correct answer is given as 840
.
Isn't it $7!/(2!2!3!)$ ?
What is the coefficient of $x^2y^2z^3$ in $(x + 2 y + z)^7 $?
This is the question at a test and the correct answer is given as 840
.
Isn't it $7!/(2!2!3!)$ ?
The coefficient of $x^2y^2z^3$ in $(x+y+z)^7$ is indeed $\frac{7!}{2!\cdot2!\cdot3!}=210$
however here we have $2y$ instead of $y$. So instead of $y^2$ we have $4y^2$. Multiplying your result by $4$ gives the desired result.
$\newcommand{\+}{^{\dagger}} \newcommand{\angles}[1]{\left\langle\, #1 \,\right\rangle} \newcommand{\braces}[1]{\left\lbrace\, #1 \,\right\rbrace} \newcommand{\bracks}[1]{\left\lbrack\, #1 \,\right\rbrack} \newcommand{\ceil}[1]{\,\left\lceil\, #1 \,\right\rceil\,} \newcommand{\dd}{{\rm d}} \newcommand{\down}{\downarrow} \newcommand{\ds}[1]{\displaystyle{#1}} \newcommand{\expo}[1]{\,{\rm e}^{#1}\,} \newcommand{\fermi}{\,{\rm f}} \newcommand{\floor}[1]{\,\left\lfloor #1 \right\rfloor\,} \newcommand{\half}{{1 \over 2}} \newcommand{\ic}{{\rm i}} \newcommand{\iff}{\Longleftrightarrow} \newcommand{\imp}{\Longrightarrow} \newcommand{\isdiv}{\,\left.\right\vert\,} \newcommand{\ket}[1]{\left\vert #1\right\rangle} \newcommand{\ol}[1]{\overline{#1}} \newcommand{\pars}[1]{\left(\, #1 \,\right)} \newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}} \newcommand{\pp}{{\cal P}} \newcommand{\root}[2][]{\,\sqrt[#1]{\vphantom{\large A}\,#2\,}\,} \newcommand{\sech}{\,{\rm sech}} \newcommand{\sgn}{\,{\rm sgn}} \newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}} \newcommand{\ul}[1]{\underline{#1}} \newcommand{\verts}[1]{\left\vert\, #1 \,\right\vert} \newcommand{\wt}[1]{\widetilde{#1}}$ \begin{align} \pars{x + 2y + z}^{7}& &=\sum_{{\vphantom{\LARGE A}a,b,c=0}\atop {\vphantom{\huge A}a + b + c = 7}}^{\infty} {7! \over a!\,b!\,c!}\,x^{a}\pars{2y}^{b}z^{c} =\sum_{{\vphantom{\LARGE A}a,b,c=0}\atop {\vphantom{\huge A}a + b + c = 7}}^{\infty} {7! \over a!\,b!\,c!}\,2^{b}\pars{x^{a}y^{b}z^{c}} \end{align}
$$ {7! \over 2!\,2!\,3!}\,2^2 = 7\cdot 6\cdot 5\cdot 4 = \color{#66f}{\large 840} $$