How to find limit of
$$\lim_{n\rightarrow \infty} n(x^{1/n}-1)$$
Via L'Hopital's rule
$$\lim_{n\rightarrow \infty} n(x^{1/n}-1) = \lim_{n\rightarrow \infty} \frac{1}{n} x^{\frac{1}{n}-1} / \frac{-1}{n^2} =\lim_{n\rightarrow \infty} x^{\frac{1}{n}-1} / \frac{-1}{n}$$
but that doesn't help.