6

Prove that for $n \in \mathbb{N}$ we have $\sum_{k=2}^n \frac{1}{k}\leq \ln(n) \leq \sum_{k=1}^{n-1} \frac{1}{k}$ by using Riemann integral?

  • 2
    For the lower bound, look at this: http://i.stack.imgur.com/SpHUQ.png For the upper bound, look at this: http://i.stack.imgur.com/TsVRD.jpg – JimmyK4542 Jul 07 '14 at 07:42
  • See also: http://math.stackexchange.com/questions/156326/showing-inequality-for-harmonic-series – Martin Sleziak Jul 08 '14 at 16:54

2 Answers2

4

Observe that $\frac{1}{n}$ is decreasing $(1)$.

$$\int\limits_{1}^{n}{\dfrac{1}{x} \, dx}=\int\limits_{1}^{2}{\dfrac{1}{x}\, dx}+\int\limits_{2}^{3}{\dfrac{1}{x}\, dx}+\cdots +\int\limits_{n-1}^{n}{\dfrac{1}{x}\, dx} \tag{2}$$

For an integrable function $f$, if $ m \le f(x)\le M \quad \forall x\in [a,b]$ then $$m(b-a)\le\int\limits_{a}^{b}{f(x) dx} \le M(b-a) \tag 3$$

Observe with the help of $(1)$ and $(3)$ that $$\dfrac{1}{m}\le\int\limits_{m-1}^{m}{\dfrac{1}{x}\, dx}\le \dfrac{1}{m-1} \tag{4}$$

Using $(2)$ and $(4)$ see that $\sum_{k=2}^n \frac{1}{k}\leq \ln(n) \leq \sum_{k=1}^{n-1} \frac{1}{k}$

hrkrshnn
  • 6,287
1

Hint. Note that on $[k, k+1] $ we have $$ \frac 1{k+1} \le \frac 1x \le \frac 1k $$ Now integrate over $[k, k+1] $ and sum from 1 to $ n-1$.

martini
  • 84,101