I will give it a try - without the idea that $f(x) = a \exp(x)$...
Given
Let $f(x)$ be a real valued, differentiable function such that for any $x,y \in \mathbb{R} ,f(x+y)=f(x)f(y)$. Suppose there exist $a,b$ such that $f(a) \ne 0$ ,$f'(b) > 0$.
Show that $f(x)$ is a monotonic function
We have
$$\forall\ x \in \mathbb{R} : f(x) \in \mathbb{R},\tag{1}$$
$$\forall\ x,y \in \mathbb{R} : f(x+y) = f(x) f(y),\tag{2}$$
$$\exists\ a \in \mathbb{R} : f(a) \ne 0,\tag{3}$$
$$\exists\ b \in \mathbb{R} : f'(b) > 0.\tag{4}$$
First
$$
f(x) = f\left( \frac{x}{2} + \frac{x}{2} \right) = f^2\left( \frac{x}{2} \right) \ge 0.\tag{5}
$$
Second
$$\Big\{ \exists\ y: f(y) = 0 \Rightarrow \forall\ x: f(x) = f(x-y) f(y) = 0 \Big\}
\tag{6}
$$
$$\Downarrow$$
$$\Big\{ \exists\ y: f(y) \ne 0 \Rightarrow \forall\ x: f(x) \ne 0 \Big\},\tag{7}
$$
whence $f(x) \ne 0$, because $f(a) \ne 0$.
Combination of $(5)$ and $(7)$ yields
$$
f(x) > 0.\tag{8}
$$
Third
$$
f'(x)
= \lim_{y \rightarrow 0} \frac{ f(x + \color{red}{y}) - f(x + \color{blue}{0})}{y}
= f(x) \lim_{y \rightarrow 0} \frac{ f(\color{red}{y}) - f(\color{blue}{0})}{y}
= f(x) f'(0),\tag{9}
$$
whence
$$
f'(0) = \frac{f'(x)}{f(x)}.\tag{10}
$$
As $f'(b) > 0$ and $f(b) > 0$ from $(8)$, we obtain
$$f'(0) > 0.\tag{11}$$
Fourth
As $f(x) > 0 $ from $(8)$ and $f'(0) > 0$ from $(11)$, we obtain
$$
f'(x) > 0,\tag{12}
$$
from $(9)$.
Conclusion:
As $f'(x) > 0$, the function $f(x)$ is monotonic. QED.