2

I'm trying to show that if $n+2\mid(n^2+n+1)(n^2+n+2)$, then $n+2 \mid 12$ for all $n\in \mathbb{N}$.

Shaun
  • 44,997
markosi
  • 39

3 Answers3

6

Hint

$$(n^2+n+1)(n^2+n+2)=n^4+2n^3+4n^2+3n+2$$

and

$$ n^4+2n^3+4n^2+3n+2=(n+2)(n^3+4n-5)+12$$

Timbuc
  • 34,191
3

Hint $\ {\rm mod}\,\ n\!+\!2\!:\,\ n\equiv -2\,\Rightarrow\, f(n)\equiv f(-2)\,$ for all polynomials $\,f\in\Bbb Z[x],\,$ a special case of the Polynomial Congruence Rule

Bill Dubuque
  • 272,048
1

Observe that $\displaystyle n^2+n=n(n+2)-(n+2)+2=(n+2)(n-1)+2$

$\displaystyle\implies (n^2+n+1)(n^2+n+2)=\{\underbrace{(n+2)(n-1)+2}+1\}\{\underbrace{(n+2)(n-1)+2}+2\}\equiv(2+1)(2+2)\pmod{(n+2)(n-1)}\equiv12\pmod{(n+2)} $