I was motivated by this question on the various applications of integration by parts to prove the following integral:
$$\int^\infty_0 x^n e^{-x} \, dx = n!$$
Here's what I have done, I feel I am very close and am just having trouble with the simplification process.
$$\text{Let} \quad I_n = \lim_{t\to \infty} \int^t_0 x^n e^{-x} \, dx$$
then by letting $u = x^n$ and $v = e^{-x}$. We have
\begin{align} I_n &= \lim_{t\rightarrow \infty} \int^t_0 x^n \int e^{-x} \, dx - \int \left[\frac{du}{dx} \cdot \int e^{-x} dx\right] \, dx \\ I_n &= \lim_{t\rightarrow \infty} \int^t_0 -x^n \cdot e^{-x} + \int nx^{n-1} e^{-x} dx \\ I_n &= \lim_{t\rightarrow \infty} \int^t_0 -x^n \cdot e^{-x} + n \int x^{n-1}e^{-x} dx \\ \end{align}
If we continue this process ($n=3$) of integration by parts, we find something like the following:
\begin{align} I_n &= \lim_{t\rightarrow \infty} \int^t_0 -x^n \cdot e^{-x} + nx^{n-1}e^{-x} + n(n-1)x^{n-2}e^{-x}+n(n-1)(n-2)\int x^{n-3}e^{-x} dx \\ I_n &= \lim_{t\rightarrow \infty} \int^t_0 x^ne^{-x} \left[-1 +nx^{-1} + n(n-1)x^{-2}\right]+n(n-1)(n-2)I_{n-3} \end{align}
so, I can already see the factorial function forming and I'm assuming as you do this more and more, it will become more noticeable. The main problem, I'm having is simplifying the last line.
One question in two parts:
- Can someone tell me if I'm on the right track?
- and please, provide a small hint to finish the problem
Thanks a lot for your help!