Wikipedia claims (http://en.wikipedia.org/wiki/Gamma_matrices):
The elements $\sigma^{\mu \nu} = \gamma^\mu \gamma^\nu - \gamma^\nu \gamma^\mu$ form a representation of the Lie algebra of the Lorentz group.
Using the convention
$$ \gamma^0 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix},\quad \gamma^1 = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & -1 & 0 & 0 \\ -1 & 0 & 0 & 0 \end{pmatrix} $$
$$ \gamma^2 = \begin{pmatrix} 0 & 0 & 0 & -i \\ 0 & 0 & i & 0 \\ 0 & i & 0 & 0 \\ -i & 0 & 0 & 0 \end{pmatrix},\quad \gamma^3 = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \\ -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix} $$
I evaluated the matrices $\sigma^{\mu\nu}$ in Mathematica. For example,
$$\sigma^{01} = \begin{pmatrix} 0 & 0 & 0 & 2 \\ 0 & 0 & 2 & 0 \\ 0 & 2 & 0 & 0 \\ 2 & 0 & 0 & 0 \end{pmatrix}$$
If this belongs to the Lie algebra for the Lorentz group then (correct me if I'm wrong here) I would expect that $M_{01}(t) = \exp(it\sigma^{01})$ would belong to the Lorentz group, so $M_{01}^T(t) \eta M_{01}(t) = \eta$ should hold, where $\eta = \operatorname{diag}(1, -1, -1, -1)$. So I evaluated this using Mathematica and got
$$M_{01}^T(t) \eta M_{01}(t) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -\cos 4t & -i \sin 4t & 0 \\ 0 & -i \sin 4t & -\cos 4t & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}$$
which doesn't look like $\eta$. What did I do wrong in the above?