Let $f$ be continuous, nonzero on $[a,b]$. For $p\in \mathbb R$, define $$\Phi_p(f)=\left(\frac{1}{b-a}\int_a^b|f(x)|^pdx\right)^{1/p}$$.
Show that $$\lim_{p\to 0} \Phi_p(f)=\exp(\frac{1}{b-a}\int_a^b \ln |f(x)|dx)$$
I have no idea on it. Once I take L' Hospital formula, I got nonsense....